PEIECWISE CONSTANT LEVEL SET METHOD BASED FINITE ELEMENT ANALYSIS FOR STRUCTURAL TOPOLOGY OPTIMIZATION USING PHASE FIELD METHOD
Authors
Abstract:
In this paper the piecewise level set method is combined with phase field method to solve the shape and topology optimization problem. First, the optimization problem is formed based on piecewise constant level set method then is updated using the energy term of phase field equations. The resulting diffusion equation which updates the level set function and optimization problem is solved through finite element method. The proposed method enhances the convergence rate and solution efficiency. Various two-dimensional examples are solved to verify the performance of proposed method.
similar resources
Structural Topology Optimization Using Finite Element Based Level Set Method Structural Topology Optimization Using Finite Element Based Level Set Method
A finite element based level set method is proposed for structural topology optimization. Because both the level set equation and the reinitialization equation are advection dominated partial differential equations, the standard Galerkin finite element method may produce oscillating results. In this paper, both equations are solved using a streamline diffusion finite element method (SDFEM). The...
full textA BINARY LEVEL SET METHOD FOR STRUCTURAL TOPOLOGY OPTIMIZATION
This paper proposes an effective algorithm based on the level set method (LSM) to solve shape and topology optimization problems. Since the conventional LSM has several limitations, a binary level set method (BLSM) is used instead. In the BLSM, the level set function can only take 1 and -1 values at convergence. Thus, it is related to phase-field methods. We don’t need to solve the Hamilton-Jac...
full textCOMPOSITION OF ISOGEOMETRIC ANALYSIS WITH LEVEL SET METHOD FOR STRUCTURAL TOPOLOGY OPTIMIZATION
In the present paper, an approach is proposed for structural topology optimization based on combination of Radial Basis Function (RBF) Level Set Method (LSM) with Isogeometric Analysis (IGA). The corresponding combined algorithm is detailed. First, in this approach, the discrete problem is formulated in Isogeometric Analysis framework. The objective function based on compliance of particular lo...
full textTOPOLOGY OPTIMIZATION OF PLANE STRUCTURES USING BINARY LEVEL SET METHOD AND ISOGEOMETRIC ANALYSIS
This paper presents the topology optimization of plane structures using a binary level set (BLS) approach and isogeometric analysis (IGA). In the standard level set method, the domain boundary is descripted as an isocountour of a scalar function of a higher dimensionality. The evolution of this boundary is governed by Hamilton–Jacobi equation. In the BLS method, the interfaces of subdomai...
full textISOGEOMETRIC TOPOLOGY OPTIMIZATION OF STRUCTURES USING LEVEL SET METHOD INCORPORATING SENSITIVITY ANALYSIS
This study focuses on the topology optimization of structures using a hybrid of level set method (LSM) incorporating sensitivity analysis and isogeometric analysis (IGA). First, the topology optimization problem is formulated using the LSM based on the shape gradient. The shape gradient easily handles boundary propagation with topological changes. In the LSM, the topological gradient method as ...
full textA level set method for structural topology optimization
This paper presents a new approach to structural topology optimization. We represent the structural boundary by a level set model that is embedded in a scalar function of a higher dimension. Such level set models are flexible in handling complex topological changes and are concise in describing the boundary shape of the structure. Furthermore, a wellfounded mathematical procedure leads to a num...
full textMy Resources
Journal title
volume 5 issue 4
pages 389- 407
publication date 2015-07
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023